精品一区视频,成人亚洲精品久久久久软件,中文字幕少妇一区二区三区,国产在线精品一区二区

撥號18861759551

你的位置:首頁 > 技術文章 > 紅外(IR)應用的正確材料

技術文章

紅外(IR)應用的正確材料

技術文章

The Correct Material for Infrared (IR) Applications

Introduction to Infrared (IR)

Infrared (IR) radiation is characterized by wavelengths ranging from 0.750 -1000μm (750 - 1000000nm). Due to limitations on detector range, IR radiation is often divided into three smaller regions: 0.750 - 3μm, 3 - 30μm, and 30 - 1000μm – defined as near-infrared (NIR), mid-wave infrared (MWIR), and far-infrared (FIR), respectively (Figure 1). Infrared products are used extensively in a variety of applications ranging from the detection of IR signals in thermal imaging to element identification in IR spectroscopy. As the need for IR applications grows and technology advances, manufacturers have begun to utilize IR materials in the design of plano-optics (i.e. windows, mirrors, polarizers, beamsplitters, prisms), spherical lenses (i.e. plano-concave/convex, double-concave/convex, meniscus), aspheric lenses (parabolic, hyperbolic, hybrid), achromatic lenses, and assemblies (i.e. imaging lenses, beam expanders, eyepieces, objectives). These IR materials, or substrates, vary in their physical characteristics. As a result, knowing the benefits of each allows one to select the correct material for any IR application.

 

Figure 1: Electromagnetic Spectrum

 

The Importance of Using the Correct Material

Since infrared light is comprised of longer wavelengths than visible light, the two regions behave differently when propagating through the same optical medium. Some materials can be used for either IR or visible applications, most notably fused silica, BK7 and sapphire; however, the performance of an optical system can be optimized by using materials better suited to the task at hand. To understand this concept, consider transmission, index of refraction, dispersion and gradient index. For more in-depth information on specifications and properties, view Optical Glass.

 

Transmission

The foremost attribute defining any material is transmission. Transmission is a measure of throughput and is given as a percentage of the incident light. IR materials are usually opaque in the visible while visible materials are usually opaque in the IR; in other words, they exhibit nearly 0% transmission in those wavelength regions. For example, consider silicon, which transmits IR but not visible light (Figure 2).

Figure 2: Uncoated Silicon Transmission Curve

 

Index of Refraction

While it is mainly transmission that classifies a material as either an IR or visible material, another important attribute is index of refraction (nd). Index of refraction is the ratio of the speed of light in a vacuum to the speed of light within a given material. It is a means of quantifying the effect of light "slowing down" as it enters a high index medium from a low index medium. It is also indicative of how much light is refracted when obliquely encountering a surface, where more light is refracted as nd increases (Figure 3).

Figure 3: Light Refraction from a Low Index to a High Index Medium

 

The index of refraction ranges from approximay 1.45 - 2 for visible materials and 1.38 - 4 for IR materials. In many cases, index of refraction and density share a positive correlation, meaning IR materials can be heavier than visible materials; however, a higher index of refraction also implies diffraction-limited performance can be achieved with fewer lens elements – reducing overall system weight and cost.

 

Dispersion

Dispersion is a measure of how much the index of refraction of a material changes with respect to wavelength. It also determines the separation of wavelengths known as chromatic aberration. Quantitatively, dispersion is inversely given by the Abbe number (vd), which is a function of the refractive index of a material at the f (486.1nm), d (587.6nm), and c (656.3nm) wavelengths (Equation 1).

 

Materials with an Abbe number greater than 55 (less dispersive) are considered crown materials and those with an Abbe number less than 50 (more dispersive) are considered flint materials. The Abbe number for visible materials ranges from 20 - 80, while the Abbe number for IR materials ranges from 20 - 1000.

 

Index Gradient

The index of refraction of a medium varies as the temperature changes. This index gradient (dn/dT) can be problematic when operating in unstable environments, especially if the system is designed to operate for one value of n. Unfortunay, IR materials are typically characterized by larger values of dn/dT than visible materials (compare N-BK7, which can be used in the visible, to germanium, which only transmits in the IR in the Key Material Attributes table in Infrared Comparison).

 

How to Choose the Correct Material

When choosing the correct IR material, there are three simple points to consider. Though the selection process is easier because there is a much smaller practical selection of materials for use in the infrared compared to the visible, these materials also tend to be more expensive due to fabrication and material costs.

 

Thermal Properties – Frequently, optical materials are placed in environments where they are subjected to varying temperatures. Additionally, a common concern with IR applications is their tendency to produce a large amount of heat. A material's index gradient and coefficient of thermal expansion (CTE) should be evaluated to ensure the user is met with the desired performance. CTE is the rate at which a material expands or contracts given a change in temperature. For example, germanium has a very high index gradient, possibly degrading optical performance if used in a thermally volatile setting.

Transmission – Different applications operate within different regions of the IR spectrum. Certain IR substrates perform better depending on the wavelength at hand (Figure 4). For example, if the system is meant to operate in the MWIR, germanium is a better choice than sapphire, which works well in the NIR.

Index of Refraction – IR materials vary in terms of index of refraction far more than visible materials do, allowing for more variation in system design. Unlike visible materials (such as N-BK7) that work well throughout the entire visible spectrum, IR materials are often limited to a small band within the IR spectrum, especially when anti-reflection coatings are applied.

Figure 4: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.)

 

Infrared Comparison

Although dozens of IR materials exist, only a handful is predominantly used within the optics, imaging, and photonics industries to manufacture off-the-shelf components. Calcium fluoride, fused silica, germanium, magnesium fluoride, N-BK7, potassium bromide, sapphire, silicon, sodium chloride, zinc selenide and zinc sulfide each have their own unique attributes that distinguish them from each other, in addition to making them suitable for specific applications. The following tables provide a comparison of some commonly used substrates.

 

Key IR Material Attributes

Name

Index of Refraction (nd)

Abbe Number (vd)

Density 
(g/cm3)

CTE 
(x 10-6/°C)

dn/dT 
(x 10-6/°C)

Knoop Hardness

Calcium Fluoride (CaF2)

1.434

95.1

3.18

18.85

-10.6

158.3

Fused Silica (FS)

1.458

67.7

2.2

0.55

11.9

500

Germanium (Ge)

4.003

N/A

5.33

6.1

396

780

Magnesium Fluoride (MgF2)

1.413

106.2

3.18

13.7

1.7

415

N-BK7

1.517

64.2

2.46

7.1

2.4

610

Potassium Bromide (KBr)

1.527

33.6

2.75

43

-40.8

7

Sapphire

1.768

72.2

3.97

5.3

13.1

2200

Silicon (Si)

3.422

N/A

2.33

2.55

1.60

1150

Sodium Chloride (NaCl)

1.491

42.9

2.17

44

-40.8

18.2

Zinc Selenide (ZnSe)

2.403

N/A

5.27

7.1

61

120

Zinc Sulfide (ZnS)

2.631

N/A

5.27

7.6

38.7

120

 

IR Material Comparison

Name

Properties / Typical Applications

Calcium Fluoride (CaF2)

Low Absorption, High Refractive Index Homogeneity

Used in Spectroscopy, Semiconductor Processing, Cooled Thermal Imaging

Fused Silica (FS)

Low CTE and Excellent Transmission in IR

Used in Interferometry, Laser Instrumentation, Spectroscopy

Germanium (Ge)

High nd, High Knoop Hardness, Excellent MWIR to FIR Transmission

Used in Thermal Imaging, Rugged IR Imaging

Magnesium Fluoride (MgF2)

High CTE, Low Index of Refraction, Good Transmission from Visible to MWIR

Used in Windows, Lenses, and Polarizers that Do Not Require Anti-Reflection Coatings

N-BK7

Low-Cost Material, Works Well in Visible and NIR Applications

Used in Machine Vision, Microscopy, Industrial Applications

Potassium Bromide (KBr)

Good Resistance to Mechanical Shock, Water Soluble, Broad Transmission Range

Used in FTIR spectroscopy

Sapphire

Very Durable and Good Transmission in IR

Used in IR Laser Systems, Spectroscopy, and Rugged Environmental Equipment

Silicon (Si)

Low Cost and Lightweight

Used in Spectroscopy, MWIR Laser Systems, THz Imaging

Sodium Chloride (NaCl)

Water Soluble, Low Cost, Excellent Transmission from 250nm to 16μm, Sensitive to Thermal Shock

Used in FTIR spectroscopy

Zinc Selenide (ZnSe)

Low Absorption, High Resistance to Thermal Shock

CO2 Laser Systems and Thermal Imaging

Zinc Sulfide (ZnS)

Excellent Transmission in Both Visible and IR, Harder and More Chemically Resistant than ZnSe

Used in Thermal Imaging

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
精品一区视频,成人亚洲精品久久久久软件,中文字幕少妇一区二区三区,国产在线精品一区二区
欧美日韩亚洲一区二| 亚洲一区在线播放| 午夜日本精品| 国产日韩一区二区| 欧美激情综合五月色丁香| 亚洲另类视频| 国产精品国产三级国产aⅴ入口 | 免费一区视频| 亚洲欧洲日产国产综合网| 国产亚洲精品久久飘花 | 久久久精品欧美丰满| 禁断一区二区三区在线| 国产精品久久久久9999高清| 欧美在线电影| 亚洲国产精品www| 国产一区二区主播在线| 欧美freesex交免费视频| 一本久久青青| 亚洲日本成人在线观看| 欧美视频精品在线| 欧美激情在线| 亚洲综合999| 伊甸园精品99久久久久久| 国产精品视频免费一区| 久久婷婷蜜乳一本欲蜜臀| 99re热这里只有精品免费视频| 在线电影国产精品| 国产精品成人播放| 欧美日韩不卡| 欧美一区二区在线视频| 亚洲黄色尤物视频| 在线观看日韩精品| 国产精品成av人在线视午夜片| 欧美精品在线一区| 欧美在线三区| 日韩视频在线永久播放| 亚洲全部视频| 国产人成精品一区二区三| 国产精品v欧美精品v日韩精品| 久久久噜噜噜久久久| 久久久久国产精品www| a91a精品视频在线观看| 黑人极品videos精品欧美裸| 国产一区二区日韩精品欧美精品| 欧美巨乳在线观看| 欧美日韩精品| 久久亚洲午夜电影| 麻豆成人精品| 欧美永久精品| 在线午夜精品| 亚洲欧美日韩精品在线| 亚洲人成亚洲人成在线观看图片 | 欧美激情区在线播放| 欧美成人激情视频免费观看| 欧美亚洲免费电影| 一区二区三区四区五区精品视频| 亚洲最新视频在线| 亚洲国产99| 亚洲六月丁香色婷婷综合久久| 国内精品免费在线观看| 在线激情影院一区| 国产三级精品三级| 狠狠色丁香久久婷婷综合丁香| 国产精品护士白丝一区av| 国产精品一区二区视频| 欧美日韩一区二区三区在线视频| 国产精品扒开腿做爽爽爽视频| 你懂的视频一区二区| 欧美激情亚洲自拍| 久久综合久久美利坚合众国| 欧美电影资源| 久久一二三四| 欧美日韩精品免费| 欧美国产免费| 国产精品高清一区二区三区| 欧美激情欧美激情在线五月| 欧美午夜理伦三级在线观看| 欧美日韩国产123区| 国产精品亚洲综合| 国产精品毛片大码女人| 国产一区二区三区黄视频| 国产区日韩欧美| 亚洲风情亚aⅴ在线发布| 国语自产精品视频在线看8查询8| 亚洲国产经典视频| 亚洲成人在线网站| 一区二区三区四区在线| 一本大道久久精品懂色aⅴ | 今天的高清视频免费播放成人| 亚洲电影自拍| 亚洲第一精品夜夜躁人人爽| 一区二区三区四区五区视频| 一本久久a久久精品亚洲| 欧美伊人影院| 欧美精品一区视频| 欧美理论电影在线播放| 国产麻豆日韩| 国产视频一区三区| 亚洲理论电影网| 亚洲精品欧美极品| 香蕉成人伊视频在线观看| 免费中文日韩| 欧美韩日亚洲| 国产偷自视频区视频一区二区| 国产精品一二三| 亚洲人成人77777线观看| 亚洲精品国产欧美| 欧美一区观看| 欧美午夜精品一区二区三区| 国产精品免费aⅴ片在线观看| 在线免费一区三区| 亚洲欧洲一区二区三区| 欧美中文字幕视频| 欧美日韩免费在线观看| 欧美午夜宅男影院| 亚洲第一在线综合网站| 亚洲日本中文字幕| 久久精品综合网| 国产精品超碰97尤物18| 国产精品久久久久一区二区三区 | 国内成人在线| 激情欧美日韩| 午夜精品免费视频| 欧美日韩国产精品自在自线| 国产精品成人播放| 亚洲精品久久久蜜桃| 亚洲最新视频在线播放| 你懂的国产精品| 国产日韩精品一区二区三区 | 国产精品久久久久久久一区探花| 国产精品网站在线播放| 99视频精品免费观看| 亚洲欧洲在线一区| 久久精品视频免费播放| 欧美性感一类影片在线播放 | 亚洲国产美女精品久久久久∴| 亚洲精品中文字幕在线观看| 久久午夜精品| 国产一本一道久久香蕉| 亚洲高清不卡| 久久久久天天天天| 国产情人节一区| 亚洲国产精品嫩草影院| 久久色在线播放| 国产一本一道久久香蕉| 亚洲免费观看在线视频| 久久久久久国产精品一区| 国产日韩欧美黄色| 亚洲精品黄色| 欧美电影免费观看高清| 亚洲黄色影片| 欧美成人国产一区二区| 国产精品一区久久久久| 亚洲网站在线看| 欧美日韩一区二| 极品中文字幕一区| 久久久久免费观看| 国内精品美女在线观看| 一本色道**综合亚洲精品蜜桃冫| 欧美激情导航| 亚洲精品小视频在线观看| 欧美福利影院| 国产一区二区黄| 久久精品国语| 国产欧美69| 国产精品视频精品| 亚洲天堂成人在线观看| 亚洲国产成人av| 免费在线日韩av| 最新中文字幕一区二区三区| 蜜桃av一区| 国产乱人伦精品一区二区 | 亚洲电影成人| 猛男gaygay欧美视频| 国产美女扒开尿口久久久| 午夜精品久久久久久99热软件| 国产精品亚洲аv天堂网| 亚洲精品国产精品乱码不99按摩 | 亚洲风情亚aⅴ在线发布| 另类激情亚洲| 国产一区二区三区久久久久久久久 | 国产精品高清免费在线观看| 亚洲黄色在线看| 欧美国产视频日韩| 一区二区三区.www| 国产精品免费网站在线观看| 亚洲国产一区视频| 欧美日韩卡一卡二| 亚洲综合国产| 国产一区二区三区久久精品| 久久久久久综合网天天| 国产女精品视频网站免费| 久久久久国产精品www | 久久亚洲精品视频| 国产情侣久久| 免费亚洲电影| 亚洲香蕉在线观看| 国产午夜亚洲精品理论片色戒| 久久影音先锋| 伊人久久大香线|